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Abstract

We develop a mathematical model for calculating thermomechanical stresses generated in a thin film
under laser-pulse action. We propose a model that also allows one to evaluate the duration of tran-
sient processes and determine laser-pulse parameters, including a profile that is particularly useful
for studies of triboluminescent materials. The model includes a nonstationary heat equation and a
thermoelasticity equation, which we solve numerically using the finite difference method.
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1. Introduction

Triboluminescence is a visible or infrared light generated under the action of mechanical forces, such

as static, dynamic, or pulsing fields of pressure or deformations [1]. Triboluminescent (TL) materials are

of great interest to engineers as promising materials for external tactile signal sensors in robotics and

new nondestructive control methods [2–5].

In [2], a mathematical model was developed for evaluating the triboluminescent light flux for known

deformation stresses in materials. But in the experiments with TL materials, where luminescence arises

due to the action of short (10−6 − 10−3 s) laser pulses with small radii of the laser beams, the stress

values cannot be obtained directly from the experiment [6,7]. Therefore, the elaboration of mathematical

models for determining mechanical stresses in materials with account of the laser-pulse parameters is of

crucial interest.

The mathematical model under consideration is applied to a thin film on a massive substrate under

the action of a temperature field in the approximation of ideal film–substrate adhesion and short laser

pulse. According to [8], we may neglect the influence of the substrate heat properties on the film heating

process.
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2. Mathematical Model

The problem can be mathematically modeled by a system of equations that includes the heat equa-

tion [9] describing a nonstationary laser-generated temperature field in the film and the thermoelasticity

equations [10] describing mechanical stresses generated by heating of the film,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρc
∂T

∂t
−A∇(λq∇T ) = f(x, y, z) = 0,

∇2(σxx + σyy) + EαT∇2(T − T0) = 0,
∂σxx
∂x

+
∂σxy
∂y

= 0 ,
∂σxy
∂x

+
∂σyy
∂y

= 0 ,

(1)

where ρ is the material density, c is the specific heat, A is the absorption efficiency of the film, λq is the

thermal conductivity, T is the temperature, t is the time, x, y, and z are the space coordinates, f(x, y, z) is

the density of the heat-source field, E is the Young modulus, αT is a linear thermal expansion coefficient,

σxx, σxy, and σyy are the stress tensor components, and T0 is the initial temperature of the material.

A peculiarity of the system of equations (1) consists of the combination of the first- and second-

order differential equations. In approximating (1), we cannot use forward or backward differences in the

first-order equations, since it breaks the symmetry of the solution, and therefore inadequate results are

obtained. We cannot use the central differences, since they lead to zero values on the main diagonal of

the coefficient matrix of the system of linear algebraic equations, providing an approximate solution of

(1). In this paper, we avoid this difficulty by differentiating the first-order differential equations to obtain

the second-order equations as follows:

∂2σxx
∂x2

+
∂2σxy
∂x∂y

= 0,
∂σxy
∂x∂y

+
∂2σyy
∂y2

= 0,
∂2σxx
∂x2

− ∂2σyy
∂y2

= 0, (2)

∂2σxx
∂x∂y

+
∂2σxy
∂y2

= 0,
∂2σxy
∂x2

+
∂2σyy
∂x∂y

= 0,
∂2σxy
∂x2

+
∂2σxy
∂y2

= −∂2σxx
∂x∂y

− ∂2σyy
∂x∂y

. (3)

Taking into account (2) and (3), we can transform the system of equations (1) and arrive at

ρc
∂T

∂t
−A∇(λq∇T ) = 0, ∇2(σxx + σyy) + EαT∇2(T − T0) = 0,

(4)
∂2σxx
∂x2

− ∂2σyy
∂y2

= 0, ∇2σxy = −∂2σxx
∂x∂y

− ∂2σyy
∂x∂y

.

We chose the initial conditions for the heat equation (1) as

T (x, y, z, tmin) = T0(x, y, z), (5)

where tmin is the initial time, and T0(x, y, z) is the initial temperature distribution at time tmin.

To transform the first-order equation in a second-order equation, we need additional boundary con-
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ditions, which we take as follows:

T (x, y, zmax) = T0(x, y, zmax), T (x, ymin, z) = T0(x, ymin, z), T (x, ymax, z) = T0(x, ymax, z),

(6)
T (xmin, y, z) = T0(xmin, y, z), T (xmax, y, z) = T0(xmax, y, z),

∂T

∂z

∣∣∣∣ x2 + y2 > D2/4
z = zmin

= 0,
∂T

∂z

∣∣∣∣
x2 + y2 ≤ D2/4
z = zmin

= −4EL/(πD
2τλq) exp

[−8(x2 + y2)/D2
]
,

(7)

σxx(x, ymin) = σxx(x, ymax) = σxx(xmin, y) = σxx(xmax, y) = 0,

σyy(x, ymin) = σyy(x, ymax) = σyy(xmin, y) = σyy(xmax, y) = 0, (8)

σxy(x, ymin) = σxy(x, ymax) = σxy(xmin, y) = σxy(xmax, y) = 0,

where xmin, xmax, ymin, and ymax are the area boundaries, zmin is the coordinate of the top (laser-heated)

film boundary, zmax is the coordinate of the bottom (film–substrate) film boundary, D is the laser-beam

patch diameter on the film surface, EL is the laser pulse energy, and τ is the laser pulse duration.

We employ the boundary conditions (6)–(8) taking into account the following approximations:

• The bottom film boundary temperature is constant and equals the substrate temperature (6);

• During the transient process considered in the problem, the temperatures of the side boundaries

are constant (7);

• Energy losses due to heat transfer from the top film surface, other than the laser beam patch, are

neglected (8);

• The heat flux on the top film surface in the laser-beam patch area (with diameterD) is set according

to the laser-pulse energy and duration (8). The right-hand side of (8) shows the laser-beam-power

distribution in space (here, the Gaussian profile [11]);

• There are no mechanical stresses at the side boundaries of the film (8), and this fact adds some

restrictions on the minimum size (x− y) of the film area under consideration.

In the general case, the heat transfer and thermoelasticity problems must be solved in 3D, but if

we consider a thin film on a massive substrate, we can solve the thermoelasticity problem in 2D (x

and y) only. Combining these 2D and 3D equations, we transform the 3D nonstationary temperature

distribution to the 2D distribution using the expression

T (x, y, t) = max [T (x, y, z, t)] . (9)

We need to obtain the 3D numerical solution of the heat transfer equation, because for the 2D heat

transfer equation the laser-beam-energy flux on the surface should be approximated by an equivalent

internal energy source, and that is not correct.

3. Results of Numerical Modeling

To solve the system of equations (4)–(8), using the finite difference method, we developed a numerical

code pack [12], which enables us to obtain temperature fields and mechanical stress tensor components
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a) b)

c) d)

Fig. 1. Temperature field (a) and stress-tensor component σxx (b), σxy (c), and σyy (d) distributions on the
ZnS (TL) film surface (10 μm thick) at time t = 2.5 μs at the end of the laser pulse. The laser pulse has a rectangular
time profile and a Gaussian power-distribution profile across the beam (average power density 283 W/mm2 and
duration 9 μs) and is focused on a patch of radius 2.5 mm.

for any given distribution of the laser-beam power in time and space. Figures 1–3 show the results of

numerical modeling of the laser-beam action on the zinc sulfate (ZnS) triboluminescent film (thermal

and mechanical parameters are shown in Table 1 [13]). We solved the problem in the approximation of

constant elastic and thermal expansion coefficients.

Table 1. Thermal and Mechanical Parameters of ZnS [13].

Parameter Value

Density, ρ 4090 kg·m−3

Specific heat, c 124 J/kg·K
Thermal conductivity, λq 27.2 W/m·K

Young modulus, E 7.4 · 1010 Pa

Linear thermal expansion coefficient, αT 6.8 · 10−6 K−1

Figure 1 shows the temperature and stress-tensor components σxx, σxy, and σyy of the fields on the

surface of the ZnS triboluminescent film (10 μm thick) at the end of the laser pulse. The laser pulse has
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a) b)

c) d)

Fig. 2. Time dependences of the maximum temperatures (a) and stress-tensor components σxx (b), σxy (c), and
σyy (d) on the ZnS (TL) film surface for the same laser pulse as in Fig. 1.

a rectangular time profile, a Gaussian power-distribution profile across the beam (average power density

283 W/mm2 and duration 9 μs), and is focused on a patch of radius 2.5 mm.

In Fig. 2, we show the time dependences of the maximum temperatures and the stress-tensor compo-

nents on the surface of the ZnS (TL) film for the same laser pulse.

Fast increase and decrease in the maximum temperature on the film surface (see Fig. 2) follow from

the high-power density of the laser pulse (283 W/mm2) accompanied at the same time by relatively high

inertia of the heat transfer in the film. Moreover, we did not take into account the heat losses from the

film surface, which is an acceptable assumption for such small laser-pulse duration [9]. Also we assume

a full absorption of the laser pulse energy in the film material in our model. Other mechanisms of the

energy dissipation can be added employing the film absorption efficiency A available in the model.

Figure 3 shows the dependences of the duration of transient processes Ttr on the film specific heat,

thermal conductivity, and thickness. To estimate the duration of transient processes Ttr, we calculated

the maximum temperature and mechanical stress-tensor components in the film. As the duration of

the transient processes, we assume the time when the considered values enter the 10% range from the

long-time established value.

The results presented in Figs. 2 and 3 allow us to evaluate the duration of transient processes for the

case where the temperature and mechanical stress-tensor components are changed. These evaluations

for materials with different heat parameters and films of different thickness allow one to obtain the

dependence of the TL light intensity observed in experiments on the unobservable mechanical stress-

tensor values for given parameters of the laser pulse.
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a) b)

Fig. 3. Dependences of the duration of transient processes on the thermal conductivity λq (a) and specific heat (b)
at a film thickness h of 10 (◦), 15 (�), and 20 μm(�).

4. Conclusions

The mathematical model we proposed [Eqs. (4)–(8)] and the numerical code pack developed [12] allow

us to calculate the temperature and mechanical stress-tensor component distributions in space and time

in triboluminescent films.

Analysis of the calculated values provides

• The dependence of the maximum temperature and stress-tensor components σxx, σxy, and σyy on

the laser pulse parameters;

• Parameters of the transient processes, including their durations;

• Parameters and profile of the laser pulse used for generating needed stresses and temperatures in

the films, which are useful for studying the TL materials.
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