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1 1. INTRODUCTION

Nowadays there is an overall adoption of parallel programming, caused by the wide use of multicore
processors, clusters and graphics processing units for various problems solving. Usually, programs are writ�
ten in imperative programming languages. The risk of making an error in a parallel program is higher in
comparison to the sequential one, as parallel programs have their specific errors.

Since the majority of system fails are the result of software malfunction, it is extremely important to
develop reliable software. Formal verification could be used to increase software reliability. Formal verifi�
cation is a proof of programs correctness by finding the correspondence between the program and its spec�
ification, which describes the aim of the development [1]. The main advantage of formal verification is the
capability to prove the absence of errors in the program, while testing only allows to detect errors. In con�
trast to other methods formal verification requires analytical treatment of source code properties, that is
why the aim of formal verification could be achieved only by rigorous mathematical proof of program to
specification correspondence. This requires formalization of objects used in verification.

One method of formal verification was introduced by Hoare [2]. It utilises an axiomatic approach
based on Hoare logic. Hoare logic is an extension of a formal system � with certain formulas, containing
the source code in the verified programming language, that are called Hoare triples. A Hoare triple is an
annotated program, namely the source code and two formulas of the theory �, that describe restrictions
on input variables and conditions of the program execution result correctness. These formulas are named
precondition and postcondition, respectively. A Hoare triple is usually of the form {ϕ}Prog{ψ}, where
Prog is a program, ϕ is a precondition and ψ is a postcondition for Prog. The extended formal system is
distinguished from � by additional axioms and inference rules, that allow to deduce assertions of program
properties, particularly of the program correctness. Then the program is correct if its Hoare triple is iden�
tically true. So the main idea of this approach is to derive a formula of formal system � from the Hoare
triple applying rules of inference and using axioms as premises, and then prove the truth of this formula
within the formal system �.

There are certain achievements in practical application of such an approach for imperative program�
ming languages [3]. However formal verification complexity for parallel imperative programs increases
rapidly for systems with both shared and distributed memory. In general, the main problem is the system
resource conflicts. The examples are improper shared memory use for shared memory systems, and dead�
locks for distributed memory systems.

An alternative to imperative programming is the functional data�flow paradigm for parallel program�
ming that represents a program as a directed data�flow graph. One implementation of the functional data�
flow paradigm is the Pifagor language [4]. The basis of this model is computation control based on the data
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readiness. The computations are carried out in the unlimited resources. And functions relationships
enable us to represent a program as an acyclic data�flow graph. Parallelism is implemented at the level of
operations. So the process of formal verification is simplified as there is no need to analyse the resource
conflicts.

Nowadays there exist some works dedicated to functional data�flow programs debugging [5] but formal
verification problem is not developed. So development of the formal verification methods for functional
data�flow programs is topical.

2. THE AXIOMATIC THEORY FOR THE FUNCTIONAL DATA�FLOW
PARALLEL LANGUAGE

Firstly, the formal system for the functional data�flow parallel language Pifagor is needed to perform
formal verification of program correctness based on the axiomatic approach. The axiomatic theory for the
Pifagor language is developed similarly to the theory for imperative programming languages described in
[1]. It is necessary to define:

(1) the language of the theory (alphabet and expressions);
(2) axioms;
(3) inference rules.

2.1. Language of the Axiomatic Theory

The Hoare triples are the main objects of the formal system.
2.1.1. The Pifagor programming language. The operator of interpretation is the main operator that

forms a program. It defines a transformation of an argument by a function and has two inputs: one for a
function and one for an argument. The operator of interpretation has prefix and postfix forms, which are
denoted by the symbols “:” and “ˆ” respectively. Only the postfix form of the operator is used in the article.
For instance, X:F means that a function F is applied to an argument X. Some functions used in the article
are described below. The detailed description of the Pifagor syntax and semantics could be found in [6].

The “length of the list” function is denoted by the symbol “|". An argument of this function is a datalist
of an arbitrary length and any type of elements. A result is an integer corresponding to the number of ele�
ments of the list first nested level. If an argument is not of the list type, then the result of the interpretation
operation is the error BASEFUNCERROR.

The “select list element” function is denoted by p:n, where n is an integer constant, that is applied to
the list p. If the argument p is not a list then the function returns the error BASEFUNCERROR. The error
BOUNDERR0R is returned if the absolute value of the constant n is greater than the list length. In case n < 0, the
n�th element is excluded from the list p. When n = 0 the function returns an “empty element” (a signal
value) denoted by “.”.

The function type returns a type of an object.
2.1.2. The language of logic specification. Preconditions and postconditions are formulas in first�order

logic, which is expressive enough for most assertions about the program.
The alphabet of first order logic, functional and predicate symbols, corresponding to functions of the

programming language, are used for constructing expressions.
Domain variables (input and output program variables) could be of different types, that is belong to dif�

ferent sets, corresponding to the types of the programming language:

T = {signal, int, float, char, bool, func, error, datalist, delaylist, parlist, asynclisttype, user_type},

where user_type is a set of user�defined types. Here and below braces are used in expressions to denote
sets by enclosing the list of its members.

Functions, which together with variables form terms, and predicates, which form formulas, are distin�
guished in first�order logic. It is not necessary to separate predicates from formulas in this case. Predicates
could be considered as a subset of functions with the range of values from the set bool. Let us introduce
certain functional and predicate symbols, denoting them by the following characters:

(1) arithmetic operations (+, –, *, /);
(2) relational symbols (=, ≠, >, <, ≥, ≤);
(3) logical operators and quantifiers (∨, ∧, ¬, ⇒, ⇔, ∀, ∃);
(4) “length of the list” function (len), “select list element” function (select), “is of type” function (∈).
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The functions len, select, ∈ are equivalent to the
corresponding built�in functions of the Pifagor lan�
guage. The type signatures of the functions men�
tioned above correspond to the those of the func�
tions and predicates of first�order logic and arith�
metic.

Define the set of elementary terms inductively:

1. Any domain variable is a term.

2. If t1, t2, …, tn are terms then any function
f(t1, t2, …, tn) is a term. In particular, symbols denoting
individual constants are nullary function symbols.

3. Terms are confined by the expressions which
can be obtained by finitely many applications of
rules 1 and 2 to terms.

An elementary formula is an elementary term with the range bool. Then any formula is inductively
defined by the following rules:

1. Any elementary formula is a formula.
2. If A is a formula then ∀xA(x) and ∃xA(x) are formulas.
3. Formulas are confined by the expressions which can be obtained by finitely many applications of

rules 1 and 2 to formulas.
Hence, having an alphabet and formation rules one can form preconditions and postconditions for the

Hoare triples. Though the form {ϕ}Prog{ψ} is not convenient for Pifagor programs, as using braces
could cause an ambiguity with braces of delaylists. As the result of this, the following notation is used for
the Hoare triple:

Prog(x) being a program with input argument x, ϕ and ψ being the precondition and the postcondition
for Prog respectively, r denoting the result of the program execution. There are no variables in the Pifagor
language, therefore introducing r is necessary for stating the postcondition.

For example, consider a function with the following code:
Fun << funcdef arg {

arg:F >> return

}

Let P and Q be the precondition and postcondition for this program. Then the Hoare triple has the fol�
lowing form:

Since a program written in Pifagor is more demonstrable when represented as a data�flow graph, it is use�
ful to attach a precondition and a postcondition to the edges of this graph. The example of the above triple
in the form of data�flow graph is shown in Fig. 1.

2.2. Axioms

Any formal system requires axioms, that is some formulas, which are defined to be true within this sys�
tem. Let us consider Hoare triples for build�in functions to be axioms. These triples are true by definition
and are formed on the basis of semantic rules of the Pifagor language [4, 7, 8]. To describe the method of
axioms inference from the semantic rules, consider every semantic rule as a directed tree. For example,
consider the rules for the “duplicating” function dup in Fig. 2. The leaves of the tree are possible results
of the function execution. To choose the required result, one must start from the root, calculate the values
of the expressions in “grey” nodes and proceed to the subtrees, whose parent is the “white” child�node of
the current “grey” node, containing the value of the evaluated expression.

Each path of such a tree from the root to a leave corresponds to one axiom. The axiom is formed by the
translation of all the expressions of the path to the language of first�order logic. A precondition is a con�

ϕ x( ) Prog x( ) r ψ r( )→ ,

P arg( ) : Farg r Q r( )→ ,

arg

P

F

Q

return

Fig. 1. A Hoare triple for the function Fun.
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junction of all argument requirements and a postcondition is an assignment of execution result identifier
to the expression in the leaf. All paths with else could be merged into a single axiom if the expressions in
their leaves are equal. Then, the axioms for “duplicating” function are the following:

It should be pointed out that a function f could be a result of previous computations. These are two
functions: “select list element” function (p:<int, f >) and “selector” function (p:<bool, f>).
In this case the precondition and the postcondition are formed in the same way, with the exception that
the function also occurs in the expression. For example, if p is an argument, the axioms of “selector” func�
tion p:f are:

2.3. The Inference Rules

To determine whether a Hoare triple is true or not, the inference rules should be defined. These rules
allow to bind axioms, based on the built�in functions, to an arbitrary program. The set of axioms and infer�
ence rules form the Hoare formal system for the Pifagor language, that enables us to infer the true asser�
tions of the program properties. The main idea of applying the inference rules is a transition from Hoare
formal system to the first order logic, namely the step�by�step transformation of a Hoare triple into a first�
order formula. Then it is possible to use classical approaches to prove the formula within the first�order
logic [9, 10].

There are two alternative ways to prevent the ambiguity of the inference [1]:

1. Using the rules of forward tracing, when inference rules are applied form top to bottom of the data�
flow graph (from input values towards the result).

2. Using the rules of backward tracing, when inference rules are applied from bottom to top of the data�
flow graph (from the result towards input values).

Consider the first alternative. By applying the rules of forward tracing, it is possible to transform any
Hoare triple, when we start with a function applied directly to input value, namely the function that is exe�
cuted on the first step. There could be more that one function in case of the functional data�flow parallel

p datalist∈( )∧

len p( ) = 2( )∧

select p 2,( ) int∈( )

r datalist∈( )∧

len r( ) = select p 2,( )( )∧

∀k(k 1 2 … select p 2,( ), , ,{ }∧∈

select(r, k) = (select(p, 1))

p:dup → r ,

¬ p datalist∈( )∨

¬ len p( ) = 2( )∨

¬ select p 2,( ) int∈( )

p:dup → r r = BASEFUNCERROR .

f true p:f r r→ p= =

f false p:f r r→ .= =

,

.

p:type

datalist

else

p:|

BASEFUNCERROR

p:2:type
int

(p1, …, pn),

else
BASEFUNCERROR

else

pi = p:1, i = 1,…, n,

BASEFUNCERROR

2 n = p:2

Fig. 2. The semantic rule for “duplicating” function dup represented as a tree.
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Pifagor language. Then any of such functions could be selected. In the general case the rule of forward
tracing for some function with the code “x:F

1
:F” has the following form:

(1)

This means that by applying the axiom  to the function F1, the Haore triple

(on the right) is transformed into a new triple (on the left) with the “shorter” program, the precondition
P(x) is replaced by P1(x), and input argument x is replaced by x1, that is by the result of applying of the

function F1 to x. The turnstile symbol  indicates that if the left Hoare triple is true, then the right triple
is also true.

So, sequential application of inference rules leads to the “shortening” of the program, which results in

the Hoare triple with an “empty” program:  This case corresponds to the situation when both pre�
condition and postcondition are attached to the same edge of the data�flow graph. Introduction on the
following inference rule enables us to transform this Hoare triple into the first�order logic formula:

(2)

Thus, using inference rules for any Hoare triple one can transform it into the first�order logic formula,
the truth of which could be proved within the first�order logic. If the formula is true then the Hoare triple
is also true, and therefore the program is correct.

Let us analyse the transformation of precondition by applying the rule of forward tracing. Consider a
Haore triple

and the set of axioms for the function f

where x, r are the input and output variables of the program that could be used as the identifiers (labels) of
input and output edges of the program data�flow graph (it is required that all identifiers are unique), xa and
ra are the input and output variables in the axioms for the function f.

The algorithm of applying the rule of forward tracing is the following:
1. Set a unique identifier x1 to the output edge of the expression x:f, as shown in Fig. 3.
2. If condition

(3)

holds, then the forward tracing rule can be used by applying the i�th axiom. This axiom corresponds to the
path in the semantic rule tree, whose conditions are thus also satisfied, and the result from the correspond�
ing leaf could be returned. Discard all axioms that do not satisfy (3). As the result, k axioms are left (they
could be renumbered from 1 to k). These k axioms correspond to k possible paths of the program execu�
tion. Each of them should be considered independently. Since all functions in Pifagor are completely
defined, there is at least one axiom that could be used.

3. Transform Hoare triple by Replacing precondition with the expression P(x) ⇒ Pi(x) ⇒ Qi(x1),

i =  at the same time “shortening” the program. The expression x:f is replaced by the identifier x1 of the
output edge, introduced on step 1 (see Fig. 3b). As the result, as many as k new Hoare triples are derived:

(4)

The initial Hoare triple is true if all the k derived triples are also true.
Let us make sure that Hoare formal system with the rule of forward tracing is consistent, namely true triples

allow to infer only true triples. Consider the forward tracing rule. Let A1, A2 and A =  x
1
:F→ r 

P1 x1( ) x
1
:F r Q r( ) , A1 A2 P x( ) x:F

1
:F r Q r( ) ,→,→

A1 := ϕ x( ) x:F x1 ψ x1( ), A2 := P x( ) ϕ x( ), P1 x1( ) := P x( ) ϕ x( ) ψ x1( ),⇒ ⇒⇒→

ϕ x( ) x:F r1 ψ r1( )→

P Q .

P Q⇒ P Q .

P x( ) x:f:g r Q r( )→

Pi xa( ) xa:f ra Qi ra( ) , i→ 1 n, ,=

P x( ) Pi x( ),⇒

1 k, ,

P x( ) Pi x( ) Qi x1( ) x
1
:g⇒ ⇒ r Q r( ) , i→ 1 k, .=

P1 x1( ) Q r( )
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be identically true. If P(x) is true then by A2, ϕ(x) is true. Further, by A1, ψ(F1(x)) is true, and hence,
P1(F1(x)) is true, and finally, by A, Q(F(F1(x))) = Q(r) is true. The proof for the rule (2) is tautology.

After the application of the rule of forward tracing (1), the precondition P is true by definition, so the
expression P ⇒ Q could be replaced by P ∧ Q, and the postcondition P ⇒ Pi ⇒ Qi could be written as
P ∧ Pi ∧ Qi.

The data�flow graph could help to demonstrate the process of triple transformation by marking edges
with formulas. In this case each transformation of the triple would lead to a new mark for the output edge
of the considering function, at the same time previously considered formulas persist. For example in Fig. 3c all
edges of the dataflow graph are marked with formulas so it corresponds to the triple with the “empty” pro�

gram: 

3. THE ANALYSIS OF FUNCTIONAL DATA�FLOW PARALLEL PROGRAM CORRECTNESS

Depending on the input data, the program could have different paths of execution. Axioms, based on
the build�in functions, completely define the tree �0 of all possible paths of the program execution. The
number of different paths of the function execution equals the number of axioms for this function. If the
restrictions (precondition) are imposed on the input values, then some paths of the tree become unattain�
able. These paths correspond to axioms, whose precondition is not derivable from the program precondi�
tion. Omitting all unattainable paths, one gets a new tree �1, that is the subtree of �0. Each path in �1
could be considered independently and transformed into a first�order formula using the inference rules.
As the result of such transformations, we get exactly k formulas, where k is the number of leaves in �1. If
the truth of each formula implies the truth of the program postcondition, then this program is correct.
Otherwise, the program is incorrect, and an error could be in the paths that correspond to formulas that
are not identically true. So proving of the program correctness is equivalent to proving the truth of several
formulas.

4. THE ANALYSIS OF RECURSION CORRECTNESS

The main problem of the program verification concerns repeatedly executed code, that in case of
incorrect program could lead to infinite looping. In this case data�flow graph is infinite. The Pifagor lan�
guage has no looping constructs and relies solely on recursion. The program is correct if on the one hand,
the program terminates in a finite number of steps, and on the other hand, its output result is correct.

P x( ) Pi Qi P̃j Q̃j Q r( ) .∧ ∧ ∧ ∧

x

P

f

x1

g

r
Q

return

(P ⇒Pi)⇒Qi

x x

P

f f

x1 x1

g g

r r
Q

Q

return

(a) (b) (c)

Pj∧Qj  

Pi∧Qi  

~ ~

return

Fig. 3. Transformations of the Hoare triple with the code “x:f:g”: a—setting identifier to the output edge of the pro�
gram data�flow graph subtree, b—the Hoare triple for the program p:f:g after applying the rule of forward tracing to
the function f, c—the Hoare triple with all edges marked.
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Let us analyse the recursive programs peculiarities. If a program contains recursion, then the same
code is called several times, and differences concern only its arguments. Then necessary condition of a
recursion termination is the sequence of the arguments passed to the recursive function being undupli�
cated.

It is obligatory for a correct recursive function to have a “branch point”, where the further execution
path is selected. In several paths, or in the base cases, the result of the function is produced trivially (with�
out recurring), and in the other (or, recursive) cases, the program recurs (calls itself) and new iteration
starts. The choice of the case on each iteration is defined by a certain function on the input arguments.
This function can be thought of as a counterpart of an if�else construct in an imperative programming lan�
guage in the sense that the conditions of recurring or leaving the recurrent function are mutually exclusive,
i.e. ¬(recursive case = true) ⇔ (base case = true).

Proving of the correctness of recursion may be done by induction (the proof of program termination is
similar). Define the notion of the bound function. A bound function is a function, bounded above, that
maps recursive function argument to the set of natural numbers �, and all arguments, for which the base
case is true, are mapped to 1.

Let us consider the proof scheme of a recursive function Rec correctness. It is done inductively by the
values of the bound function f.

The basis: check whether the program is correct for argument x = p0, so that f (p0) = 1.
The inductive step: assume that the program is correct for all arguments for which the bound function

values are less than N. A parameter pN corresponds to the number N such that f(pN) = N. Then it is suffi�
cient to show that

(1) during the Rec(pN) function execution, the function Rec is called recursively only with arguments

pi, i =  such that f(pi) < N;

(2) parameters pi, i =  must be permitted inputs of the function Rec (this condition is independent
of the bound function and could be used as a primary criterion of the function correctness);

(3) if Rec(pi), i =  return correct results then Rec(pN) terminates and it remains to show that Rec(pN)
returns the correct result.

The algorithm described above is a sufficient condition of the recursive function correctness. If we can
not prove the correctness of the function, then either the program is incorrect or the bound function was
not properly selected. In the latter case a new bound function is needed.

5. AN EXAMPLE

Let us demonstrate the peculiarity of proving the correctness of a program, which evaluates a quotient
and a remainder of division. Such an example is considered in [1] for proving the imperative program cor�
rectness. Source code in the Pifagor language of the function evaluating a quotient and a remainder of
integer x divided by integer y is given below:
DIV << funcdef arg {

x<<arg:1; y<<arg:2;

(x,y,0,x):div_rec >> return

}

div_rec << funcdef arg {

x<<arg:1; y<<arg:2; q1<<arg:3; r1<<arg:4;

({(x,y,(q1,1):+, (r1,y):-):div_rec},(q1,r1)):

[((y,r1) : [<=, >]):?]:. >> return

}

The main function DIV takes a datalist with two integers x and y as an argument, and has a recursive
function div_rec, which evaluates the quotient and the remainder of division. We define the following
triple for the function DIV (Fig. 4a)

1 n, ,

1 n, ,

1 n,

x y, int∈( )∧

x 0≥( ) ∧ y 0>( )
(x,y):DIV → (q, r) .

x = y q r+⋅( )∧

r y<( )
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To simplify the description we omit the assignment of identifiers to x and y with the “select list element”
function, and the argument arg is represented as a datalist (x, y).

Firstly let us prove the correctness of the function DIV, supposing that the div_rec function correct�
ness is proved. If the function div_rec is correct, then the following Hoare triple corresponds to correct
input arguments:

(5)

So this triple could be used as a theorem when applying the forward tracing rule to the DIV program triple.
There is a one more triple T for the function div_rec with the precondition equal to the negation of the
triple (5) precondition. But in this case the arguments are incorrect so the result is incorrect and the func�
tion DIV is considered as incorrect.

Let us show that the condition (3) is satisfied. The function DIV passes the list of arguments
(x,y,0,x) to the function div_rec. Then in the precondition of the function div_rec the variables
q1 and r1 are replaced with 0 and x respectively. We have the following expression:

Thus, the Hoare triple (5) could be used in the DIV triple transformations with the forward tracing rule (4).

It should be pointed out that the precondition, as it is a negation of the triple T could not be deduced
from the program precondition, as it is a negation of the triple (5) precondition. So the triple T is excluded.

x y q1 r1 int∈, , ,( )∧

x 0≥( ) ∧ y 0>( )∧

q1 0≥( ) ∧ r1 0≥( )∧

x = y q1 r1+⋅( )

q r, int∈( )∧

q 0≥( ) ∧ r 0≥( )∧

x = y q r+⋅( )∧

r y<( )

(x,y,q1,r1):div_rec → (q, r) .

PDIV x y,( ) Pdiv_rec x y 0 x, , ,( )⇒ x y int∈,( ) x 0≥( ) y 0>( )∧ ∧( )≡

 ⇒ x y 0 int∈, ,( ) x 0≥( ) y 0>( ) 0 0≥( ) x 0≥( ) x = y 0 x+⋅( )( )∧ ∧ ∧ ∧ ∧

≡ x y int∈,( ) x 0≥( ) y 0>( )∧ ∧( ) x y int∈,( ) y 0>( ) x 0≥( ) x = x( )∧ ∧ ∧( ) true.≡⇒

return

x

return

(q, r ∈ int)∧

(x = y ⋅ q + r)∧ (x = y ⋅ q + r)∧

(x = y ⋅ q + r)∧

(q, r ≥ 0 )∧

(r < y)

(q,r) (q,r)

div_rec

arg

arg = (x,y) arg = (x,y)

arg

x

(x, y ∈ int)∧

(x ≥ 0)∧(y > 0)

(x, y ∈ int)∧

(x ≥ 0)∧(y > 0)

1 2

0

yy

0

21

div_rec

(r < y) (r < y)

Fig. 4. Transformations of Hoare triple for the program DIV: a—the initial Hoare triple, b—the Hoare triple after trans�
formation according the forward tracing rule.

(a) (b)
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After transformation based on the theorem (5) the precondition of the DIV triple has the following
form:

If the precondition of the DIV program is always considered as true, then the above expression could be
written as:

The program DIV transformation according the forward tracing based on the theorem (3) is shown in
Fig. 4b. As the result we got the triple with an “empty” program. It, in turn, could be transformed accord�
ing to the rule (2) into the following formula:

Obviously this formula is identically true, which means that the program DIV is correct.

Let us prove the correctness of the recursive function div_rec with the Hoare triple (5). For the sake
of simplicity we omit the assignment of identifiers to the elements of the input argument list and argument
arg is represented as a datalist (x, y,q1, p1).

Let the input argument of the function, written in the list form (x, y, q1, p1), be called “the
current argument”. And the expression for the recursive call (x, y, (q1, 1) :+, (r1, y):-)
be called “the argument of the recursive call”. Let “(y, r1) :<=” be called “the condition of recur�
ring”. If the expression is true then the branch of the data�flow graph with recursive calls starts executing.
Let “(y, r1) :>” be called “the condition of leaving” the recurrent function. When this condition is
true, the branch of the data�flow graph, that has no recursive call, starts executing. The last condition is
true if and only if “the condition of recurring” is false. So the function definitely finishes its execution.

When the execution of the function div_rec starts, the input arguments y and r1 form the list
(y, r1). Then functions “<=” and “>” are applied to this list. These are built�in functions with the
same axioms which differ from each other only in the sign of the operation. For instance, axioms of the
function “<=” are the following:

The condition (3) holds only for the first axiom. After applying the rule of forward tracing based on the
first axiom we get formulas for “the condition of recurring” and “the condition of leaving” the recurrent
function. They are (y ≤ r1) and (y > r1) respectively. The output values of these formulas are boolean con�
stants, that form the datalist of two elements, which is an input argument of the function “?”. According
to the semantics, the function “?” returns the sequence number of true elements of the list. As “the con�
dition of recurring” and “the condition of leaving” the recurrent function are mutualexcluding, the func�
tion “?” returns “1” or “2”. The given constant is used as a “select list element” function being applied
to the list

This is a way the conditional choice in the Pifagor language is implemented, determining whether the
branch of the data�flow graph that has or does not have a recursive call starts executing.

PDIV Pdiv_rec Qdiv_rec⇒ ⇒ x y int∈,( ) x 0≥( ) y 0>( )∧ ∧( )≡

 ⇒ ( q r int∈,( ) q r, 0≥( ) x = y q r+⋅( ) r y<( ) ).∧ ∧ ∧

x y int∈,( ) x 0≥( ) y 0>( ) q r int∈,( ) q r 0≥,( ) x = y q r+⋅( ) r y<( ).∧ ∧ ∧ ∧ ∧ ∧

x y q r, , int∈,( ) x q r, , 0≥( ) y 0>( ) x = y q r+⋅( ) r y<( ) x = y q r+⋅( ) r y<( ).∧⇒∧ ∧ ∧ ∧

p1 p2, int float,{ }∈( )∨

p1 p2, char∈( )∨

p1 p2, bool∈( )

r1 bool∈( )∧

r1 = p1 p2≤( )
(p1,p2):<= → r1 ,

¬( p1 p2, int float,{ }∈( )∨

p1 p2, char∈( )∨

p1 p2, bool∈( )

r1 error∈( )∧
(p1,p2):<= → r1 ,(r1 = BASEFUNCERROR)

x y, q1 1,( ):+, r1 y,( ):–,( ): div_rec{ }, q1 r1,( )( ).
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The distinction between “the condition of recurring” and “the condition of leaving” the recurrent
function enables us to “divide” the initial triple into two triples, namely, the initial triple (5) is true if the
following two triples are also true:

(6)

(7)

where prog corresponds to the code “{(x, y, (q1, 1):+, (r1, y):-):div_rec}:.”. The
precondition of the first triple is the conjunction of the program div_rec precondition and “the condi�
tion of leaving” the recurrent function, and in the code of the triple the “branch point” is replaced by the
branch of the data�flow graph without a recursion. The second triple precondition is the conjunction of
the program precondition and “the condition of recurring”, and in the code the “branch point” is
replaced by the branch of the data�flow graph with a recursive call.

Let us consider the triple (7). The function “.” executes in the first place and releases the delay of the
delay list. It does not change precondition and postcondition. By applying the forward tracing rule based
on the axioms for function “–” and “+”, the expressions (q, 1):+ and (r, y):– are replaced by
formulas q2 := (q1 + 1) and r2 := (r1 – y), respectively and the following Hoare triple is obtained:

(8)

Further the function div_rec is called recursively with the (x, y, q2, r2) “argument of the recur�
sive call”.

Let us define the bound function for the function div_rec:

res being a remainder of x divided by y ((x = q ⋅ y + res) ∧ (res < y)), f being an integer function of integer
arguments. f is defined for all (x, y, q1, r1) that satisfy the function div_rec precondition, as (x, q1, r1 ≥ 0) and
(y > 0), f(x, y, q1, r1) ≥ 1.

Let us prove the correctness of the function div_rec inductively by the values of the bound function.

The basis. The program terminates if “the condition of leaving” the recurrent function y > r1 is true for
the argument (x, y, q1, r1). From the precondition (5) it follows that the expression x = y ⋅ q1 + r1 is true.
Also, from the definition of res it follows that res = r1. Then

Obviously, the result of the function execution satisfies the precondition (5). The formal check of this
assertion is done by proving the correctness of the triple (6). The function “.” does not change its argu�

x y q1 r1, , , int∈( )∧

x 0≥( ) ∧ y 0>( )∧

q1 0≥( ) ∧ r1 0≥( )∧

x = y q1⋅ r1+( ) ∧ y r1>( )

q r, int∈( )∧

q 0≥( ) ∧ r 0≥( )∧

x = y q r+⋅( )∧

r y<( )

(q1,r2):. → (q, r) ,

x y q1 r1, , , int∈( )∧

x 0≥( ) ∧ y 0>( )∧

q1 0≥( ) ∧ r1 0≥( )∧

x = y q1⋅ r1+( ) ∧ y r1≤( )

q r, int∈( )∧

q 0≥( ) ∧ r 0≥( )∧

x = y q r+⋅( ) ∧ r y<( )

prog → (q, r) ,

x y q1 r1, , , int∈( )∧

x 0≥( ) ∧ y 0>( )∧

q1 0≥( ) ∧ r1 0≥( )∧

x = y q1⋅ r1+( ) ∧ y r1≤( )∧

q2 = q1 1+( ) ∧ r2 = r1 y–( )

q r, int∈( )∧

q 0≥( )∧

r 0≥( )∧

x = y q r+⋅( )∧

r y<( )

(x,y,q2,r2):div_rec → (q, r) ,

f x y q1 r1, , ,( ) 1 x y q1⋅ res+( ),–+=

res x mod y,=

f x y q1 r1, , ,( ) 1 x y q1 res+⋅( )–+ 1 y q1⋅ r1+( )+= = y q1 res+⋅( )– 1.=
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ment, so taking into account that (q = q1) and (r = r1) we conclude that the rule of transformation a triple
into the first�order logic formula (2) could be used:

Obviously, this formula is identically true. It should be pointed out that f(x, y, q1, r1) > 1 is true if “the con�
dition of leaving” the recurrent function fails.

The inductive step. Let the argument (x, y, q1, r1) satisfy the precondition of the triple (5), the “condition of
recurring” y ≤ r1 and let the value of the bound function for this argument be equal to N: f(x, y, q1, r1) = N.
Assume that the function is correct for all arguments for which the bound function values are less than N.
Let us show that the value of the bound function for the argument of the recursive call is always less than N:

Then, according to the inductive assumption, the triple for the function div_rec, applied to “the argu�
ment of the recursive call”, is correct (in the precondition of the formula (5) the terms q1 and r1 are
replaced by q2 and r2 respectively):

(9)

The above triple could be used as a theorem for proving the truth of the Hoare triple (8) with the help
of the forward tracing rule, when the function div_rec is considered as nonrecursive. Firstly let us check
the condition (3). It is sufficient to show that the div_rec precondition holds for “the argument of the
recursive call”. We now show that the truth of the precondition of (8) leads to the truth of the precondition
of (9). It is equivalent to the following formula:

The above formula is true, so the precondition of the function div_rec holds for the “the argument of
the recursive call”. Hence the forward tracing rule based on the theorem (9) could be applied to the triple
(7). This transformation results in the Hoare triple with an “empty” program. It is transformed according
to the rule (2) into the following formula:

This formula is identically true, which implies the correctness of the program div_rec.

6. CONCLUSIONS

This paper describes an alternative approach to verification of parallel programs written in functional
data�flow programming paradigm. A formal system, sufficient for proving the correctness of a program
written in the Pifagor language, is considered. The peculiarities of the Pifagor language allows to represent
a program as a data�flow graph, which simplifies the process of their debugging and verification. Due to
the fact that Pifagor language does not restrict program parallelism, it could be used as an abstract speci�
fication for parallel programs. This allows easier debugging and verification with further formal (automatic
or manual) transferring the program to the system with specific architecture. Further this method could
be used as a base of a toolkit to support program correctness proving, since this method could be made
automatic at many stages.

x y q1 r1, , , int∈( ) x 0≥( ) y 0>( ) q1 0≥( ) r1 0≥( ) x = y q1 r1+⋅( ) y r1>( ))∧ ∧ ∧ ∧ ∧ ∧(

⇒ q1 r1, int∈( ) q1 0≥( ) r1 0≥( ) x = y q1⋅ r1+( ) r1 y<( )∧ ∧∧ ∧( ).

f x y q2 r2, , ,( ) f x y q1 1 r1 y–,+, ,( ) 1 x y q1 1+( )⋅ res+( )–+ 1 x y q1⋅ res+( )–+= = = y–

=  f x y q1 r1, , ,( ) y– N y N.<–=

x y q2 r2, , , int∈( )∧

x 0≥( ) ∧ y 0>( )∧

q2 0≥( ) ∧ r2 0≥( )∧

x = y q2⋅ r2+( )

q r, int∈( )∧

q 0≥( ) ∧ r 0≥( )∧

x = y q r+⋅( )∧

r y<( )

(x,y,q2,r2):div_rec → (q, r) .

x y q1 r1, , , int∈( ) x 0≥( ) y 0>( ) q1 0≥( ) r1 0≥( ) x = y q1⋅ r1+( ) y r1≤( ) q2 = q1 1+( )∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ r2 = r1 y–( ) x y q2 r2, , , int∈( ) x 0≥( ) y 0>( ) q2 0≥( ) r2 0≥( ) x = y q2⋅ r2+( ).∧ ∧ ∧ ∧ ∧⇒

( x y q1 r1, , , int∈( ) x 0≥( ) y 0>( ) q1 0≥( ) r1 0≥( ) x = y q1⋅ r1+( ) y r1≤( ) q 0≥( )∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ r 0≥( ) x = y q⋅ r+( )∧ r y<( ) ) q r int∈,( ) q 0≥( ) r 0≥( ) x = y q⋅ r+( ) r y<( )∧ ∧ ∧ ∧( ).⇒∧
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